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Abstract 

The best possible solution to a business problem shall be often found by trying 

many different solutions and scoring them to determine their quality. The 

stochastic optimization techniques, such as the Genetic Optimization Technique, 

shall be used for this purpose. In this paper, the optimum assignment of machine 

problems to experienced technicians in a large manufacturing unit is discussed. 

Sometimes, there may be even hundreds of machine problems in a big 

manufacturing unit, competing for the attention of a very few experienced 

technicians, to get fixed. A genetic optimization algorithm is used in this paper 

for obtaining the optimum assignment of machine problems to technicians. 
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1.  Introduction  

The collaborative filtering techniques are now increasingly used in the field of 

data science [1]. The Hadoop Ecosystem now plays an important role in big 

dataanalytics [2]. Price Predictors are often designed by the Data Analysts by 

using the KNN algorithm [3]. Potential insights into the customer preferences are 

now obtained by the Data Analysts by applying the Hierarchical Clustering 

algorithms [4]. In this paper, the optimum allocation of machine problems, which 

are often encountered in a big manufacturing company, to a small set of 

experienced Technicians is obtained by using the Genetic algorithm. 

We consider here ten machine problems which are vying for getting the attention 

of five experienced technicians. For the purpose of fixing a machine problem, the 

manufacturing floor supervisor may indicate a particular technician as his first 

choice. Sometimes, this assignment may not be possible if the particular 

technician has already been assigned another machine problem. So, the 

supervisor will also indicate another technician as his second choice for fixing 

every machine problem. We now create a new python file named fixFault.py and 

add the list of technicians and the list of machine problems, along with their top 

two choices of technicians: 
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  import random 

 import math 

  # The technicians, each of whom has two available slots  

  # for solving two machine problems at a time 

  technicians = [‘Jerald’, ‘Giftson’, ‘Diravium’, ‘Yokesh’, ‘Bala’] 

  # Technicians, along with their first and second choices 

  preferences =    [ (‘Problem1’, (‘Yokesh’, ‘Diravium’)), 

       (‘Problem2’, (‘Jerald’, ‘Bala’)), 

       (‘Problem3’, (‘Giftson’, ‘Jerald’)), 

       (‘Problem4’, (‘Jerald’, ‘Bala’)), 

       (‘Problem5’, (‘Giftson’, ‘Yokesh’)), 

       (‘Problem6’, (‘Diravium’, ‘Bala’)), 

       (‘Problem7’, (‘Bala’, ‘Giftson’)), 

       (‘Problem8’, (‘Yokesh’, ‘Diravium’)), 

       (‘Problem9’, (‘Yokesh’, ‘Diravium’)), 

       (‘Problem10’, (‘Diravium’, ‘Giftson’))] 

Here, each problem cannot be assigned to a technician, who has been indicated 

as the first choice for solving this problem by the supervisor. For example, only 

two problems can be allotted at a time to the technician Yokesh, but in the case 

of Problem 1, Problem 8 and Problem 9, Yokesh is indicated as the first choice 

by the supervisor. Assigning any of these problems to the second-choice 

technician will mean there will not be enough slots for Diravium for the problems 

proposed to be assigned to him as the first choice. 

The problem involved in assigning the problems to the appropriate technicians 

will become acute when hundreds of problems are to be assigned to the 

technicians in a large manufacturing unit. In such a case, it is not possible to 

consider all possible solutions as there may be even 1,00,000 possible solutions 

at times. This is so when we assume that four problems can be assigned at a time 

to each technician in a large manufacturing unit. 

2.  Cost Function 

If we form a cost function that will return a very high value for invalid solutions, 

it will make it very difficult for the optimization algorithm to find better solutions 

because it has no way to determine if it is close to other good or even valid 

solutions. In general, it is better not to waste processor cycles searching among 

invalid solutions. 

A better way to approach the issue is to find a way to represent solutions so that 

every solution is valid. A valid solution need not be necessarily a good solution. 

It just means that there are exactly two problems assigned to each technician. One 

way to do this is to think of every technician as having two slots, so that there are 

ten slots in total. Each problem, in order, is assigned to one of the open slots. The 

first problem can be placed in any one of the ten slots, the second problem can be 
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placed in any of the nine remaining slots, and so on. The domain for searching 

has to capture this restriction. We have to add the following line of code to 
fixFault.py: 

  # [(0,9), (0,8), (0,7), (0,6), ..., (0,0)] 

 domain = [(0, (len(technicians) * 2) – i – 1) for i range  

    (0, len (technicians) * 2)]  

The cost function starts with the construction of a list of slots. The slots are 

removed as they are used up. The cost is calculated by comparing a problem’s 

current technician assignment to its top two choices. The total cost will not 

increase if the problem is currently assigned to its top choice technician, by 1 if 

it is assigned to its second-choice technician, and by 3 if it is not assigned to either 

of its choices. Let us add the following cost function to fixFault.py: 

 def technicianCost (vec): 

  cost = 0 

   # A list of slots is created 

   slots = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4] 

   # Looping over each problem 

   for i in range (len(vec)): 

    = int (vec[i]) 

   technician = technicians [slots[x]] 

   preference = preferences[i][1] 

   # First choice costs 0, second choice costs 1 

   if preference[0] == technician: cost += 0 

   elif preference[1] == technician: cost += 1 

   else : cost += 3 

   # Not on the list costs 3 

   # Remove selected slot 

   del slots [x] 

  return cost 

3.   Genetic Optimization Technique 

The goal of our optimization problem is to minimize the cost by choosing the 

correct assignment of machine problems to the available technicians. Testing 

every combination will guarantee that we get the best answer, but it will take a 

very long time on most types of computers. Trying a few thousand random 

guesses and seeing which one is best is another possible technique. Randomly 

trying different solutions is very inefficient because it does not take advantage of 

the good solutions that have already been discovered. 

Genetic Algorithms work by initially creating a set of random solutions known 

as the population. At each step of the optimization, the cost function for the entire 
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population is calculated to get a ranked list of solutions. After the solutions are 

ranked, a new population - known as the next generation - is created. First, the 

top solutions in the current population are added to the new population as they 

are. This process is called elitism. The rest of the new population consists of 

completely new solutions that are created by modifying the best solutions. 

There are two ways in which the solutions can be modified. The simpler of these 

is called mutation, which is usually a small, simple, random change to an existing 

solution. In our study, a mutation can be done simply by picking one of the 

numbers in the solution and increasing or decreasing it. 

The other way to modify solutions is called crossover or breeding. This method 

involves taking two of the best solutions and combining them in some way. In 

this study, a simple way to do crossover is to take a random number of elements 

from one solution and the rest of the elements from another solution. 

A new population, usually the same size as the old one, is created by randomly 

mutating and heading the best solutions. Then the process repeats - the new 

population is ranked and another population is created. This continues either for 

a fixed number of iterations or until there has been no improvement over several 

generations. We add now the geneticOptimization( ) function to fixFault.py: 

 def geneticOptimization (domain, costf, populationSize = 50, step = 1,  

  mutationProbability = 0.2, elite = 0.2 maximumIterations = 100): 

   # Mutation Operation is performed 

   def mutate (vec) : 

    i = random.randint (0, len (domain) – 1) 

    if random.random ( ) < 0.5 and vec[i] > domain[i][0] : 

     return vec[0:i] + [vec[i] – step] + vec[i+1:] 

    elif vec[i] < domain[i][1] : 

     return vec[0:i] + [vec[i] + step] + vec[i+1:] 

    # Crossover Operation is performed 

    def crossover(r1, r2): 

     i = random.randint(1, len(domain) –2) 

     return r1[0:i] + r2[i:] 

    # The initial population is built 

    population = [ ] 

    for i in range (populationSize): 

     vec = [random.randint(domain[i][0], domain[i][1]) 

      for i in range (len(domain))] 

     population.append(vec) 

    # To find the number of winners from each generation 

    topelite = int (elite * populationSize) 

    # Main loop starts here 

    for i in range (maximumIterations): 
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     scores = [(costf (v), v) for v in population] 

     scores.sort ( ) 

     ranked = [v for (s,v) in scores] 

     # Starting with the pure winners 

     population = ranked [0 : topelite] 

     # Adding mutated and bred forms of the winners 

     while len(population) < populationSize: 

      if random.random( ) < mutationProbability: 

       # Mutation is done 

       c = random.randint (0, topelite) 

       population.append(mutate(ranked[c])) 

      else: 

       # Crossover is done 

       C1 = random.randint (0, topelite) 

       C2 = random.randint (0, topelite) 

       population.append (crossover(ranked[c1],  

           ranked[c2])) 

     # Printing current best score 

     print scores[0][0] 

    return scores[0][1]  

Once the optimum assignment of problems to the appropriate technicians is 

obtained with the help of the above geneticOptimization( ) function, it shall be 

printed by using the following printAssignment( ) function, which is to be added 

to fixFault.py: 

  def printAssignment(vec): 

   slots = [ ] 

   # Two slots are created for each technician 

   for i in range (len(technicians) : slots += [i,i] 

   # Looping over each problem assignment 

   for i in range (len(vec)): 

    x = int(vec[i]) 

    # Choosing the slot from the remaining ones 

    technician = technicians [slots[x]] 

    # Displaying the problem’s name and assigned technician’s name 

    print preferences[i][0], technician 

    # Remove this slot 

    del slots[x] 

In the following python session, we obtain the optimum assignment of problems 

to the technicians and display the same: 
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 >>> reload (fixFault) 

  >>> s = fixFault.geneticOptimization(fixFault.domain, fixFault.technicianCost) 

  >>>fixFault.printAssignment(s)  

  Problem1 Giftson 

  Problem2 Bala 

  Problem3 Jerald 

  Problem4 Bala 

  problem5 Diravium 

  Problem6 Diravium 

  Problem7 Yokesh 

  problem8 Yokesh 

  Problem9 Giftson 

  problem10 Jerald 

4.  Conclusion 

The genetic optimization algorithm is used in this paper to obtain the above stated 

optimum assignment of machine problems to the technicians. 
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