
ReTeLL (December 2017), Vol. 18

~100~

Optimum Assignment of Machine Problems to Technicians

Using a Genetic Algorithm

………………………………………………………………………….……………………………………………………………………………………………….…………………….

Dr. C. Muthu
Associate Professor, Department of Statistics

St. Joseph’s College, Tiruchirappalli
&

M. C. Prakash
PG Student, Bharathidasan University, Tiruchirappalli

Abstract

The best possible solution to a business problem shall be often found by trying

many different solutions and scoring them to determine their quality. The

stochastic optimization techniques, such as the Genetic Optimization Technique,

shall be used for this purpose. In this paper, the optimum assignment of machine

problems to experienced technicians in a large manufacturing unit is discussed.

Sometimes, there may be even hundreds of machine problems in a big

manufacturing unit, competing for the attention of a very few experienced

technicians, to get fixed. A genetic optimization algorithm is used in this paper

for obtaining the optimum assignment of machine problems to technicians.

Key Terms: Stochastic optimization, Genetic Algorithm, Optimum Assignment.

1. Introduction

The collaborative filtering techniques are now increasingly used in the field of

data science [1]. The Hadoop Ecosystem now plays an important role in big

dataanalytics [2]. Price Predictors are often designed by the Data Analysts by

using the KNN algorithm [3]. Potential insights into the customer preferences are

now obtained by the Data Analysts by applying the Hierarchical Clustering

algorithms [4]. In this paper, the optimum allocation of machine problems, which

are often encountered in a big manufacturing company, to a small set of

experienced Technicians is obtained by using the Genetic algorithm.

We consider here ten machine problems which are vying for getting the attention

of five experienced technicians. For the purpose of fixing a machine problem, the

manufacturing floor supervisor may indicate a particular technician as his first

choice. Sometimes, this assignment may not be possible if the particular

technician has already been assigned another machine problem. So, the

supervisor will also indicate another technician as his second choice for fixing

every machine problem. We now create a new python file named fixFault.py and

add the list of technicians and the list of machine problems, along with their top

two choices of technicians:

ReTeLL (December 2017), Vol. 18

~101~

 import random

 import math

 # The technicians, each of whom has two available slots

 # for solving two machine problems at a time

 technicians = [‘Jerald’, ‘Giftson’, ‘Diravium’, ‘Yokesh’, ‘Bala’]

 # Technicians, along with their first and second choices

 preferences = [(‘Problem1’, (‘Yokesh’, ‘Diravium’)),

 (‘Problem2’, (‘Jerald’, ‘Bala’)),

 (‘Problem3’, (‘Giftson’, ‘Jerald’)),

 (‘Problem4’, (‘Jerald’, ‘Bala’)),

 (‘Problem5’, (‘Giftson’, ‘Yokesh’)),

 (‘Problem6’, (‘Diravium’, ‘Bala’)),

 (‘Problem7’, (‘Bala’, ‘Giftson’)),

 (‘Problem8’, (‘Yokesh’, ‘Diravium’)),

 (‘Problem9’, (‘Yokesh’, ‘Diravium’)),

 (‘Problem10’, (‘Diravium’, ‘Giftson’))]

Here, each problem cannot be assigned to a technician, who has been indicated

as the first choice for solving this problem by the supervisor. For example, only

two problems can be allotted at a time to the technician Yokesh, but in the case

of Problem 1, Problem 8 and Problem 9, Yokesh is indicated as the first choice

by the supervisor. Assigning any of these problems to the second-choice

technician will mean there will not be enough slots for Diravium for the problems

proposed to be assigned to him as the first choice.

The problem involved in assigning the problems to the appropriate technicians

will become acute when hundreds of problems are to be assigned to the

technicians in a large manufacturing unit. In such a case, it is not possible to

consider all possible solutions as there may be even 1,00,000 possible solutions

at times. This is so when we assume that four problems can be assigned at a time

to each technician in a large manufacturing unit.

2. Cost Function

If we form a cost function that will return a very high value for invalid solutions,

it will make it very difficult for the optimization algorithm to find better solutions

because it has no way to determine if it is close to other good or even valid

solutions. In general, it is better not to waste processor cycles searching among

invalid solutions.

A better way to approach the issue is to find a way to represent solutions so that

every solution is valid. A valid solution need not be necessarily a good solution.

It just means that there are exactly two problems assigned to each technician. One

way to do this is to think of every technician as having two slots, so that there are

ten slots in total. Each problem, in order, is assigned to one of the open slots. The

first problem can be placed in any one of the ten slots, the second problem can be

ReTeLL (December 2017), Vol. 18

~102~

placed in any of the nine remaining slots, and so on. The domain for searching

has to capture this restriction. We have to add the following line of code to
fixFault.py:

 # [(0,9), (0,8), (0,7), (0,6), ..., (0,0)]

 domain = [(0, (len(technicians) * 2) – i – 1) for i range

 (0, len (technicians) * 2)]

The cost function starts with the construction of a list of slots. The slots are

removed as they are used up. The cost is calculated by comparing a problem’s

current technician assignment to its top two choices. The total cost will not

increase if the problem is currently assigned to its top choice technician, by 1 if

it is assigned to its second-choice technician, and by 3 if it is not assigned to either

of its choices. Let us add the following cost function to fixFault.py:

 def technicianCost (vec):

 cost = 0

 # A list of slots is created

 slots = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]

 # Looping over each problem

 for i in range (len(vec)):

 = int (vec[i])

 technician = technicians [slots[x]]

 preference = preferences[i][1]

 # First choice costs 0, second choice costs 1

 if preference[0] == technician: cost += 0

 elif preference[1] == technician: cost += 1

 else : cost += 3

 # Not on the list costs 3

 # Remove selected slot

 del slots [x]

 return cost

3. Genetic Optimization Technique

The goal of our optimization problem is to minimize the cost by choosing the

correct assignment of machine problems to the available technicians. Testing

every combination will guarantee that we get the best answer, but it will take a

very long time on most types of computers. Trying a few thousand random

guesses and seeing which one is best is another possible technique. Randomly

trying different solutions is very inefficient because it does not take advantage of

the good solutions that have already been discovered.

Genetic Algorithms work by initially creating a set of random solutions known

as the population. At each step of the optimization, the cost function for the entire

ReTeLL (December 2017), Vol. 18

~103~

population is calculated to get a ranked list of solutions. After the solutions are

ranked, a new population - known as the next generation - is created. First, the

top solutions in the current population are added to the new population as they

are. This process is called elitism. The rest of the new population consists of

completely new solutions that are created by modifying the best solutions.

There are two ways in which the solutions can be modified. The simpler of these

is called mutation, which is usually a small, simple, random change to an existing

solution. In our study, a mutation can be done simply by picking one of the

numbers in the solution and increasing or decreasing it.

The other way to modify solutions is called crossover or breeding. This method

involves taking two of the best solutions and combining them in some way. In

this study, a simple way to do crossover is to take a random number of elements

from one solution and the rest of the elements from another solution.

A new population, usually the same size as the old one, is created by randomly

mutating and heading the best solutions. Then the process repeats - the new

population is ranked and another population is created. This continues either for

a fixed number of iterations or until there has been no improvement over several

generations. We add now the geneticOptimization() function to fixFault.py:

 def geneticOptimization (domain, costf, populationSize = 50, step = 1,

 mutationProbability = 0.2, elite = 0.2 maximumIterations = 100):

 # Mutation Operation is performed

 def mutate (vec) :

 i = random.randint (0, len (domain) – 1)

 if random.random () < 0.5 and vec[i] > domain[i][0] :

 return vec[0:i] + [vec[i] – step] + vec[i+1:]

 elif vec[i] < domain[i][1] :

 return vec[0:i] + [vec[i] + step] + vec[i+1:]

 # Crossover Operation is performed

 def crossover(r1, r2):

 i = random.randint(1, len(domain) –2)

 return r1[0:i] + r2[i:]

 # The initial population is built

 population = []

 for i in range (populationSize):

 vec = [random.randint(domain[i][0], domain[i][1])

 for i in range (len(domain))]

 population.append(vec)

 # To find the number of winners from each generation

 topelite = int (elite * populationSize)

 # Main loop starts here

 for i in range (maximumIterations):

ReTeLL (December 2017), Vol. 18

~104~

 scores = [(costf (v), v) for v in population]

 scores.sort ()

 ranked = [v for (s,v) in scores]

 # Starting with the pure winners

 population = ranked [0 : topelite]

 # Adding mutated and bred forms of the winners

 while len(population) < populationSize:

 if random.random() < mutationProbability:

 # Mutation is done

 c = random.randint (0, topelite)

 population.append(mutate(ranked[c]))

 else:

 # Crossover is done

 C1 = random.randint (0, topelite)

 C2 = random.randint (0, topelite)

 population.append (crossover(ranked[c1],

 ranked[c2]))

 # Printing current best score

 print scores[0][0]

 return scores[0][1]

Once the optimum assignment of problems to the appropriate technicians is

obtained with the help of the above geneticOptimization() function, it shall be

printed by using the following printAssignment() function, which is to be added

to fixFault.py:

 def printAssignment(vec):

 slots = []

 # Two slots are created for each technician

 for i in range (len(technicians) : slots += [i,i]

 # Looping over each problem assignment

 for i in range (len(vec)):

 x = int(vec[i])

 # Choosing the slot from the remaining ones

 technician = technicians [slots[x]]

 # Displaying the problem’s name and assigned technician’s name

 print preferences[i][0], technician

 # Remove this slot

 del slots[x]

In the following python session, we obtain the optimum assignment of problems

to the technicians and display the same:

ReTeLL (December 2017), Vol. 18

~105~

 >>> reload (fixFault)

 >>> s = fixFault.geneticOptimization(fixFault.domain, fixFault.technicianCost)

 >>>fixFault.printAssignment(s)

 Problem1 Giftson

 Problem2 Bala

 Problem3 Jerald

 Problem4 Bala

 problem5 Diravium

 Problem6 Diravium

 Problem7 Yokesh

 problem8 Yokesh

 Problem9 Giftson

 problem10 Jerald

4. Conclusion

The genetic optimization algorithm is used in this paper to obtain the above stated

optimum assignment of machine problems to the technicians.

References

 1. Jacques Bughin, “Big Data, Big Bang?”, Journal of Big Data, 2016, Vol.3,

Iss. 2, pp. 1-14.

 2. Muthu, C. and Prakash, M.C., “Impact of Hadoop Ecosystem on Big Data

Analytics”, International Journal of Exclusive Management Research -

Special Issue, 2015, Vol. 1, pp. 88-90.

 3. Muthu, C. and Prakash, M.C., “Building a Price Predictor for an Auctioning

Website”, RETELL, 2015, Vol. 15, Iss. 1, pp. 135-137.

 4. Muthu, C. and Prakash, M.C., “Hierarchical Clustering of Users’

Preferences”, RETELL, 2016, Vol. 16, Iss. 1, pp. 135-136.

 5. Muthu, C. and Prakash, M.C., “Matching the users of a Website using SVM

Technique”, RETELL, 2017, Vol. 17, Iss. 1, pp. 53-56.

 6. Muthu, C. and Prakash, M.C., “Using Bayesian Classifier for Email

Sorting”, RETELL, 2017, Vol. 17, Iss. 1, pp. 57-60.

	RETELL_2017dec_102.pdf
	RETELL_2017dec_103.pdf
	RETELL_2017dec_104.pdf
	RETELL_2017dec_105.pdf
	RETELL_2017dec_106.pdf
	RETELL_2017dec_107.pdf

